SYLLABUS

Academic year 2021-2022

Year of study I / Semester I

1. Information on academic programme

1.1. University	„1 Decembrie $1918 "$ from Alba lulia
1.2. Faculty	Faculty Of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science / 251201, 251203, 251204

2. Information of Course Matter

3. Course Structure (Weekly number of hours)

3.1. Weekly number of hours	$\mathbf{4}$	3.2. course	$\mathbf{2}$	3.3. seminar, laboratory
3.4. Total number of hours in the curriculum	$\mathbf{5 6}$	3.5. course	$\mathbf{2}$	
Allocation of time:	$\mathbf{2 8}$	3.6. seminar, laboratory	$\mathbf{2 8}$	
Individual study of readers		hours		
Documentation (library)	20			
Home assignments, Essays, Portfolios		20		
Tutorials		$\mathbf{2 7}$		
Assessment (examinations)	Other activities......		$\mathbf{2}$	

3.7 Total number of hours for individual study	69
3.9 Total number of hours per semester	$69+56=125$
3.10 Number of ECTS	5

4. Prerequisites (where applicable)

4.1. curriculum-based	-
4.2. competence-based	-

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with board

6. Specific competences to be acquired

Professional competences	C4.1 Defining the basic concepts and principles of the professional field, as well as mathematical
	theories and models.
	C4.2 Interpretation of mathematical and computer model.
	C4.3 Identify appropriate models and methods for solving real problems.
	C4.4 Using simulation to study the behavior of the models and evaluate performance.
	C4.5 Incorporation of formal models in specific applications in various fields.
Transversal competences	-

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	This course is designed to introduce students to various topics in algebra and geometry that they will encounter in Computer Science theory. The concepts are illustrated with actual examples from the specialized literature. Exercises are designed to encourage the student to begin thinking about mathematics within a theoretical context. 7.2 Specific objectives of the course - To understand several important concepts in linear algebra, including systems of linear equations and their solutions; matrices and their properties; determinants and their properties; vector spaces; linear independence of vectors; subspaces, bases, and dimension of vector spaces; inner product spaces; linear transformations; and eigenvalues and eigenvectors; - to apply these concepts to such real informatics phenomena as networks and computer programming. - to improve the ability (or to learn) to prove mathematical theorems; - to improve your ability to think logically, analytically, and abstractly; - to improve your ability to communicate mathematics, both orally and in writing.

8. Course contents
8.1 Course (learning units) Teaching methods Remarks 1. Matrix: definition, operations and properties. Splitting a matrix into a submatrix (blocks). Lecture, conversation $\mathbf{2}$ 2. The determinant of a matrix. Inverse matrix. The rank of a matrix. Lecture, conversation $\mathbf{2}$ 3. Systems of linear equations. Cramer type systems. Lecture, conversation $\mathbf{2}$ 4. Compatibility of linear equations systems. Partial elimination method (Gauss). Total elimination method (Gauss-Jordan). Lecture, conversation $\mathbf{2}$ 5. Composition laws. Algebraic structures with internal composition laws: monoids, groups, rings. Lecture, conversation $\mathbf{2}$ 6. Vector spaces. Linear dependence and linear independence. Lecture, conversation $\mathbf{2}$ 7. Generator system. Bases. The dimension of a vector space. Lecture, conversation $\mathbf{2}$ 8. Real vector spaces with scalar product. Orthogonality. Lecture, conversation $\mathbf{2}$ 9. Linear applications. The kernel and image of a linear application. Lecture, conversation $\mathbf{2}$ 10. Right in the plan. Lecture, conversation $\mathbf{2}$ 11. Conics. Circle, ellipse, parabola, hyperbola. $\mathbf{2}$ 12. Coordinate systems in space. The plan. Lines in space. $\mathbf{2}$ 13. Plain curves. Tangent and normal to a flat curve. The curvature of a plane curve. Lecture, conversation $\mathbf{2}$ 14. Curves in space. The tangent plane and the normal plane to a curve in space. The curvature and torsion of a curve in space. Lecture, conversation References 1. Leon, L., Linear algebra with application, Ed. Pearson, 2014. 2. McCrea, W., Analytical Geometry of Three Dimensions, Dover publications, 2015. 3. Sochi, ., Introduction to Differential Geometry of Space Curves and Surfaces, Independently published, 2014 4. Cimpean, D., Inoan, I., An Invitation to Linear Algebra and Analytic Geometry, Editura Mediamira, Cluj-Napoca, 2009. 5. Andrica, D., Topan, L. Analytic Geometry, Cluj University Press, 2004.

1. Matrix: definition, operations and properties. Splitting a matrix into a submatrix (blocks).	Exercises and problems	2
2. The determinant of a matrix. Inverse matrix. The rank of a matrix.	Exercises and problems	2
3. Systems of linear equations. Cramer type systems.	Exercises and problems	2
4. Compatibility of linear equations systems. Partial elimination method (Gauss). Total elimination method (Gauss-Jordan).	Exercises and problems	2
5. Composition laws. Algebraic structures with internal composition laws: monoids, groups, rings.	Exercises and problems	2
6. Vector spaces. Linear dependence and linear independence.	Exercises and problems	2
7. Generator system. Bases. The dimension of a vector space.	Exercises and problems	2
8. Real vector spaces with scalar product. Orthogonality.	Exercises and problems	2
9. Linear applications. The kernel and image of a linear application.	Exercises and problems	2
10. Right in the plan.		2
11. Conics. Circle, ellipse, parabola, hyperbola.	Exercises and problems	2
12. Coordinate systems in space. The plan. Lines in space.	Exercises and problems	
13. Plain curves. Tangent and normal to a flat curve. The curvature of a plane curve. 14. Curves in space. The tangent plane and the normal plane to a curve in space. The curvature and torsion of a curve in space.	Exercises and problems	2
References 1. Leon, L., Linear algebra with application, Ed. Pearson, 2014. 2. McCrea, W., Analytical Geometry of Three Dimensions, Dover publications, 2015. 3. Sochi, T., Introduction to Differential Geometry of Space Curves and Surfaces, Independently published, 2014 4. Cimpean, D., Inoan, I., An Invitation to Linear Algebra and Analytic Geometry, Editura Mediamira, Cluj-Napoca, 2009. 5. Andrica, D., Topan, L. Analytic Geometry, Cluj University Press, 2004.	Exercises and problems	2
		2

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives,

 professional associations and employers in the fieldThe accumulation by students of knowledge related to this discipline requires their preparation for the labor market, so that they can solve the problems that arise in practice by creating appropriate mathematical models.
10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Final evaluation	Written paper	50%
10.5 Seminar/laboratory	Continuous assessment	Tests during the semester	50%
10.6 Minimum performance standard: Modelling and solving some medium complexity level problems, using the mathematical and computer sciences knowledge.			

