SYLLABUS

FUNDAMENTAL ALGORITHMS

1. Program General Data

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Exact Sciences and Engineering
1.3. Department	Computer Science, Mathematics and Electronics
1.4. Area	Computer Science
1.5. Level	Undergraduate
1.6. Specialization	Computer Science, COR 251201, 251204, 251203

2. Subject General Data

2.1. Subject		Fundamental a	Fundamental algorithms		2. Code		CSE202	
2.3. Course holder/	Lectu	rer/ Instructor's	s Domşa Ovidiu					
Name								
2.4. Teaching Assista	ant's N	Jame	Bîrluțiu Adriana					
2.5. Year	II	2.6. Semester	Ι	2.7. Evaluation	Ε	2.8. Status	(C –	0
				form (E – final		Compulsory,	Op –	
				exam/C-		optional, F -	Facultative)	
				examination /VP))			

3. Course Structure (Weekly number of hours)

3.1. Weekly number of hours	2	3.2. course	2	3.3. seminar, laboratory	2
3.4. Total number of	28	3.5. course	28	3.6. seminar, laboratory	28
curricula					
Time distribution:					Hours
Individual study using the lecture notes					18
Documentation (library)					18
Homework, Essays, Portfolios					18
Tutoring					7
Evaluation (exams)					8
Other activities					-

3.7 Total number of hours for individual study	69
3.9 Total number of hours per semester	125
3.10 Credits	5

4. Prerequisites

4.1. Curricula prerequisites	Imperative and procedural programming
	Algorithms and data structures
	Graph algorithms
4.2. according to the general competencies	

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.
5.2. Conditions for supporting	Laboratory – computers. Software: BorlandC, Internet acces.
seminar/laboratory activities	

6. Competențe specifice acumulate (cele alese de titular din grila de competente)

Professional competences	- Development of skills required to solve complex problems using the algorithms
-	studied.
	- Identify the addressed problems with the studied techniques and algorithms.
	-The student will be able to translate in algorithmic language (pseudocode,
	programming language) the solution of complex problems.
	- Thoroughly study of data structures and algorithms concepts and the methods
	used for handling them (hash tables, trees, graphs).
Transversal competences	Cognitive skills: acquisition of basic and specific knowledge about the concept of
	fundamental algorithm; the ability to identify the applicability of the studied
	algorithms in real problems; understanding the need of using fundamental
	algorithms when addressing problems from an algorithmic perspective; acquiring
	basic knowledge on the concept of algorithms complexity.
	Affective skills: develop the capacity of analysis and understanding of a highly
	complex real problems and effectively address it from an algorithmic perspective.
	Team spirit: encouraging students to work in design, analysis and programming
	teams. Awarness of the importance of the knowledge and thoroughly study of
	fundamental algorithms.

7. Course objectives

6.1 General course	- Develop algorithmic thinking and skills for developing complex algorithms.
objectives	- Learning basic tools for developing fundamental algorithms.
	- Knowledge of types of fundamental algorithms and their development methods.
	- Use of an advanced programming language for implementing the studied
	algorithms.
6.2 Specific course	
objectives	

8. Course contents

Lectures	Didactic methods used	Observații
General principles for algorithm development.	Lecture, discussions, examples	2
Complexity of algorithms. Asymptotic analysis of worst	Lecture, discussions, examples	2
case scenario.		
Numerical algorithms. Optimization of numerical	Lecture, discussions, examples	2
algorithms. Primality. Bell numbers. Stirling numbers.		
Catalan numbers. Numbers with special properties.		
Sorting: HeapSort, QuickSort, RadixSort, Median-	Lecture, discussions, examples	2
Algorithms, Lower Bounds.		
Analysis of sorting and searching algorithms complexity.	Lecture, discussions, examples	2
Parallel sorting: enumeration sort, odd-even transposition	Lecture, discussions, examples	2
sort.		

Parallel sorting: bitonic sort, quicksort on a hypercube.	Lecture, discussions, examples	2
Binary search trees.	Lecture, discussions, examples	2
AVL trees. Red-black trees. B-trees.	Lecture, discussions, examples	2
Hash tables. Collision resolution. Hash functions.	Lecture, discussions, examples	2
Graph algorithms: Transitive Closure, Shortest Path	Lecture, discussions, examples	2
Problems, Minimum Spanning Trees.		
Branch&Bound algorithms. Exemples of problems	Lecture, discussions, examples	2
solved with the Branch&Bound method.		
NP-complete algorithms.	Lecture, discussions, examples	2
		2
Analysis, evaluation, and feed-back.	Lecture, discussions, examples	2

References

- 1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

Seminars-laboratories	Didactic methods used	2
General principles for algorithms development.	laboratory works	2
Complexity of algorithms.	laboratory works	2
Numerical algorithms. Goldbach conjecture. Bell	laboratory works	2
numbers, Catalan numbers, Entringer numbers, Stirling.		
Combinatorial calculus. Modular exponentiation. Large		
numbers operations.		
Sorting: HeapSort, QuickSort, RadixSort, BrickSort	laboratory works	2
BucketSort, CountSort.		
Analysis of sorting and searching algorithms complexity.	laboratory works	2
Graph algorithms: graphs representations, graphs	laboratory works	4 hours
traversal, shortest paths.		
Graph algorithms: cycles, Eulerian graph, Hamiltonian	laboratory works	4hours
graph, connectivity, strong connectivity, coupling, flow.	-	
Binary search trees.	laboratory works	2
Red-black trees. B-trees.	laboratory works	2
Evaluation of arithmetic expressions. Polish notation for	laboratory works	2
arithmetic expressions.		
Practical applications. Examples of practical problems	laboratory works	2
solved with efficient methods.		

References

- 1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula

- Not applicable.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the	
10.4 Course	Final evaluation	Written exam	60%	
	-	-	-	
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory practical works	40%	
	-		-	
10.6 Minimum performance standard:				

Completion date	Instructor's signature	Teaching assistant's signature
23.09.2021		
Date of approval within the department		Head of departament's signature