SYLLABUS

PROGRAMMING BASICS 2021-2022

1. Program General Data

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Area	Computer Science
1.5. Level	Undergraduate
1.6. Specialization	Computer Science

2. Subject General Data

2.1. Subject		Programming basics		2.2.	Code		CSE103	3
2.3. Course holder	. Course holder/ Lecturer/ Instructor's Domşa Ovidiu			vidiu				
Name								
2.4. Teaching Assis	tant's N	Jame	Incze Arpad					
2.5. Year	Ι	2.6. Semester	Ι	2.7. Evaluation form (E – final exam/C- examination /VP)	E	2.8. Status (Compulsory, optional, F -	Op –	0

3. Course Structure (Weekly number of hours)

of course structure (Weeking mann				
3.1. Weekly number of	2	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	28	3.5. course	28	3.6. seminar, laboratory	28
hours according to the					
curricula	-				
Time distribution:					Hours
Individual study using the lecture notes					28
Documentation (library)					28
Homework, Essays, Portfolios					28
Tutoring				7	
Evaluation (exams)				28	
Other activities					-
27 Total analysis of hor	una fan in diwid	luci atu der	110		
3.7 Total number of hou	ars for individ		119		

3.9 Total number of hours per semester	175
3.10 Credits	7

4. Prerequisites

4.1. Curricula prerequisites	
4.2. according to the general competencies	Mathematics at the medium level.

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.
5.2. Conditions for supporting	Laboratory – computers. Software: BorlandC, Internet acces.
seminar/laboratory activities	

6. Competențe specifice acumulate (cele alese de titular din grila de competente)

Professional competences	- Development of skills required to solve problems using the fundamentals
	structure in algorithms.
	- Identify the addressed problems with the studied techniques and algorithms.
	-The student will be able to translate in algorithmic language (pseudo code,
	programming language) the solution of the elementary date structures and
	problems.
	- Thoroughly study of elementary data structures and algorithms concepts and the
	elementary methods used for handling them (simple data, tables, strings,).
Transversal competences	Cognitive skills: acquisition of basic and specific knowledge about the concept of
	elementary algorithm; the ability to identify the applicability of the studied
	algorithms in real problems; understanding the need of using elementary methods
	to create algorithms when addressing problems from an algorithmic perspective;
	acquiring basic knowledge on the concept of algorithms complexity.
	Affective skills: develop the capacity of analysis and understanding of an
	algorithmically problems and effectively address it from an algorithmic
	perspective. Team spirit: encouraging students to work in design, analysis and
	programming teams. Awareness of the importance of the knowledge and
	thoroughly study of elementary algorithms.

7. Course objectives

6.1 General course objectives	- Develop algorithmic thinking and skills for developing
	elementary algorithms.
	- Learning basic tools for developing elementary algorithms.
	- Knowledge of types of methods and data structure regarding
	algorithms and their development methods.
	- Use of an advanced programming language for implementing
	the studied algorithms.
	- Programming in C language knowledge.
6.2 Specific course objectives	

8. Course contents

Lectures	Didactic methods used	Observation
General principles for structured programming and	Lecture, discussions, examples	2
algorithm development.		
Definitions: Algorithms. Characteristics. Structure, data	Lecture, discussions, examples	2
and algorithmically steps.		
Organizing data and structure in structural programming.	Lecture, discussions, examples	2
Linear, alternative and while structures.		
Algorithms: Elaboration, Correctness, Complexity and	Lecture, discussions, examples	2
Testing.		
Elementary algorithms. Switch variable values,	Lecture, discussions, examples	2

alternative structures, While and repeat structures,		
vectors, mathematical quantification each/exist, Cartesian		
product algorithm.		
Counting, Summary, Searching elementary algorittms.	Lecture, discussions, examples	2
Evaluation	Lecture, discussions, examples	2
Sub algorithms, defining parameters and variable transfer	Lecture, discussions, examples	2
Elementary sorting methods (Bubble sort, Selection Sort,	Lecture, discussions, examples	2
Numbering Sort, Insertion Sort)		
Sorting and searching algorithms complexity. Elementary	Lecture, discussions, examples	2
algorithm methods. Intercalation.		
Recursively algorithms. Recursively function.	Lecture, discussions, examples	2
C language. Elementary concepts. Vocabulary. Data	Lecture, discussions, examples	2
definition. Input/output data in C.	_	
Programming structure in C. Instructions IF, WHILE,	Lecture, discussions, examples	2
DO, CASE		
Elementary algorithms, applications.	Lecture, discussions, examples	2
Deferences		

References

- 1. Ovidiu Domsa, Imperative / Procedural programming, Course notes, 2013.
- 2. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

Searching (2nd Edition), 1998. Addison-wesley 11 Seminars-laboratories	Didactic methods used	2
General principles for structured programming and	laboratory works	2
algorithm development. Examples.		
Describe algorithms using logical schema flow, pseudo	laboratory works	2
code language and programming languages.		
C language. IDE Code Blocks. C programs structure. C	laboratory works	2
elementary programs examples.		
Elementary C language data and structure representation.	laboratory works	2
Input/ Output data in C.		
Structural programming in C.	laboratory works	2
Elementary Vectors program examples.	laboratory works	2
Elementary String program examples.	laboratory works	2
Elementary algorithm implementation. Switch, Search,	laboratory works	2
Counting, numbering, Sum		
Sorting algorithms. (Bubble sort, Selection Sort,	laboratory works	2
Numbering Sort, Insertion Sort)		
Application. Sorting and searching algorithms	laboratory works	2
complexity. Elementary algorithm methods.		
Intercalation.		
Recursively algorithms. Recursively function. Examples.	laboratory works	2
Application.	laboratory works	2
Evaluation. Portfolio of laboratory practical works	laboratory works	2

References

- 1. Ovidiu Domsa, Imperative / Procedural programming, Course notes, 2013.
- 2. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula

- Not applicable.

10. Assessment

10. 115565511611				
Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the	
			final mark	
10.4 Course	Final evaluation	Written exam	50%	
	-	-	-	
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory practical works	50%	
	-		-	
10.6 Minimum performance standard:				

Completion date

Instructor's signature

Teaching assistant's signature

.....

Date of approval within the department

Head of departament's signature

.....