SYLLABUS

ARTIFICIAL INTELLIGENCE

1. Information on academic programme

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science

2. Information of Course Matter

2.1. Course Artificial intell		ligence	2.2.	Code	CSE 3	801	
2.3. Course Leader		Muntean N	Maria-Viorela				
2.4. Seminar Tutor Muntean Maria-Viorela							
2.5. Academic	II	2.6. Semester	I	2.7. Type of	CE	2.8. Type of course	C
Year				Evaluation		(C-Compulsory, Op – optional,	
				(E – final exam/		F - Facultative)	
				CE - colloquy examination /			
				CA -continuous assessment)			

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					Hours
Individual study of readers					40
Documentation (library)					20
Home assignments, Essays, Portfolios					30
Tutorials					2
Assessment (examinations)				2	
Other activities					-

3.7 Total number of hours for individual study	94
3.8 Total number of hours in the curriculum	56
3.9 Total number of hours per semester	150
3.10umber of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	1. Algorithms and data structures
4.2. competence-based	-

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / board / Microsoft Teams Platform
5.2. laboratory-based	Laboratory – computers, Internet access. / Microsoft
	Teams Platform

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

	J \ 1	. 0	1 0 /
7	1 General objectives of the course	- 1	To support Course slides, information
		- 1	For students: course support in editable format
		- '	Technical equipment: laptop, video projector
7	2 Specific objectives of the course	- 1	To support the seminar: informative
		- 1	Technical equipment: laptop, projector

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. INTRODUCTION	Lecture, conversation,	2h
	exemplification	
2. SOLVING IA PROBLEMS. SEARCH METHODS.	Lecture, conversation,	2h
ALGORITHMS	exemplification	
3. PROBLEM SOLVING STRATEGIES	Lecture, conversation,	2h
	exemplification	
4. KNOWLEDGE REPRESENTATION MODELS.	Lecture, conversation,	2h
FIRST-ORDER LOGIC.	exemplification	
5. DECISION RULES MODEL	Lecture, conversation,	2h
	exemplification	
6. THE STRUCTURED KNOWLEDGE MODEL	Lecture, conversation,	2h
	exemplification	
7. APPROXIMATE REASONING. NOTIONS OF	Lecture, conversation,	2h
FUZZY SET THEORY	exemplification	
8. PLANNING AND MACHINE LEARNING	Lecture, conversation,	2h
	exemplification	
9. THEORETICAL FUNDAMENTALS OF	Lecture, conversation,	2h
ARTIFICIAL NEURONAL NETWORKS	exemplification	
10. RECURRENT NEURONAL NETWORKS. SELF-	Lecture, conversation,	2h
ORGANIZING MAPS. UNSUPERVISED	exemplification	
LEARNING	1.0	
11. SELF-ORGANIZING NEURAL NETWORKS	Lecture, conversation,	2h
(KOHONEN). DEEP-LEARNING	exemplification	
12. EXPERT SYSTEMS	Lecture, conversation,	2h
	exemplification	

13. NEURAL NETWORKS APPLICATIONS	Lecture, conversation,	4h
	exemplification	

- 1. Russell, Stuart J., Norvig, Peter, Artificial Intelligence: A Modern Approach , 1995.
- 2. Paolo Benanti, Artificial Intelligence, Robots, Bio-engineering and Cyborgs: New Challenges for Theology?, 2019
- 3. Mark Last, Piotr S. Szczepaniak, Zeev Volkovich, Abraham Kandel (Eds.): Advances in Web Intelligence and Data Mining. Studies in Computational Intelligence Vol. 23 Springer 2006.
- 4. Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, Vipin Kumar, Next Generation of Data Mining, Taylor and Francis Group, Chapman & Hall, 2009.

La	boratories	Teaching methods	
1.	Search trees. Heuristic search. Classic examples of smart	Project-work, computer-based	2h
	games.	activities, laboratory activities	
2.	First-order logic examples.	Project-work, computer-based	2h
		activities, laboratory activities	
3.	Prolog programming language. Prolog facts and rules.	Project-work, computer-based	2h
		activities, laboratory activities	
4.		Project-work, computer-based	2h
	composed sentences. Sections of a Prolog program.	activities, laboratory activities	
5.		Project-work, computer-based	2h
	operators, lists.	activities, laboratory activities	
6.	Prolog and first-order logic. The control structure of the	Project-work, computer-based	2h
	Prolog language. Backtracking. Predicates fail and! (cut).	activities, laboratory activities	
7	The predicate "not".	During to the second section I am a I	2h
/.	Lisp programming language. Symbols, functions, structures. Syntactic and semantic rules. Primitive	Project-work, computer-based	2n
	functions in Lisp.	activities, laboratory activities	
8.	Basic predicates in Lisp. Predicates for lists; predicates for	Project-work, computer-based	2h
	numbers. Logical and arithmetic functions. Defining user	activities, laboratory activities	
	functions.	, ,	
9.	Linking variables, recursive algorithms. Evolved	Project-work, computer-based	2h
	mechanisms: EVAL form. Functional forms: FUNCALL	activities, laboratory activities	
	and APPLY functions. LAMBDA expressions.		
10	Generators, functional arguments. MAP functions. Iterative forms. Input and output	Project-work, computer-based	2h
10.	operations. Data structures. Macro-definitions. Optional	activities, laboratory activities	211
	arguments.	delivities, informory activities	
11.	Software applications in the field of Artificial Intelligence.	Project-work, computer-based	2h
	Neural network simulators. Matlab	activities, laboratory activities	
12.	Software applications in the field of Artificial Intelligence.	Project-work, computer-based	4h
	Intelligent agent systems.	activities, laboratory activities	
13.	Project presentation and evaluation	Project-work, computer-based	2h
		activities, laboratory activities	

References

- 1. https://www.swi-prolog.org/pldoc/doc_for?object=manual
- 2. https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/
- 3. https://www2.cs.sfu.ca/CourseCentral/310/pwfong/Lisp/

4.	https:/	/common-l	lisp.net/	tutoria	ls
----	---------	-----------	-----------	---------	----

1. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

2. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final	
			grade	
10.4 Course	Final evaluation	Written evaluation	50%	
10.5 Seminar/laboratory	Laboratory activities	Practical evaluation	50%	
	portfolio			
10.6 Minimum performance standard: minimum 5 at written evaluation and minimum 5 at practical evaluation				

Submission date	Course leader signature	Seminar tutor signature
Date of approval by Department members		Department director signature
		